Oligophosphan-Liganden, XXVII¹⁾

RuH₂[P(CH₂CH₂CH₂PMe₂)₃]: Bildung, Protonierung, CO₂-Einschub und oxidative Addition von Benzol

Martin Antberg, Lutz Dahlenburg*, Kay-Michael Frosin und Nils Höck

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (FRG)

Eingegangen am 3. November 1987

Als Zwischenprodukt der zum Dihydridokomplex $\operatorname{RuH}_2(pp_3)$ (1) führenden Umsetzung von $\operatorname{RuCl}_2(pp_3)$ mit LiAlH₄ in THF ließ sich eine äußerst labile polyhydridische Aluminatoverbindung der Zusammensetzung [Li₃Ru₂H₃(AlH₄)₄(pp₃)₂(OC₄H₈)₂]_x (2) isolieren [pp₃ = P(CH₂CH₂CH₂PMe₂)₃]. 1 reagierte mit HBF₄ unter Bildung von [RuH(pp₃)]BF₄ (3); das Trihydrido-Derivat [Ru-H₃(pp₃)]BF₄ wurde nicht erhalten. Die Einwirkung von Kohlendioxid auf 1 führte zum Formato-Komplex RuH[OC(O)H](pp₃) (4). Bei der Photolyse von 1 in C₆D₆ entstand als metallorganisches Produkt ausschließlich RuD(C₆D₅)(pp₃), was für die photochemische Bildung von RuH(C₆H₅)(pp₃) (5) aus 1 und Benzol den Schritt einer oxidativen C-H-Addition an das koordinativ ungesättigte Fragment Ru(pp₃) nahelegt. Die Molekülstruktur von 5 wurde röntgenographisch ermittelt.

Zwei der seit längerer Zeit mit Vorrang bearbeiteten Aspekte der metallorganischen Chemie von Übergangsmetall-Hydridokomplexen beinhalten die Reduktion von Kohlendioxid durch CO₂-Insertion in die jeweilige M-H-Bindung^{2,3)} sowie die Funktionalisierung freier Kohlenwasserstoffe durch oxidative C-H-Addition an das koordinativ ungesättigte Zentralteilchen thermisch oder photolytisch erzeugter dehydrierter Folgekomplexe^{4,5)}. Neuere Schwerpunkte liegen auf dem Gebiet von Derivaten mit molekularen H₂-Liganden⁶⁾ sowie bei M-H-Al-verbrückten Aluminato-Mehrkernkomplexen⁷⁾, welche die labilen Primärprodukte der klassischen Übergangsmetallhydrid-Synthese aus Halogeno-Vorläufern und Lithiumalanat⁸⁾ darstellen.

Vor diesem Hintergrund untersuchten wir auch den Titelkomplex RuH₂(pp₃) [1; pp₃ = P(CH₂CH₂CH₂PMe₂)₃] und berichten hier über den Weg seiner Bildung aus Ru-Cl₂(pp₃) und LiAlH₄⁹ sowie über den Verlauf seiner Reaktionen mit HBF₄ und CO₂. Weiterhin beschreiben wir die Resultate von Untersuchungen, die wir in Fortführung der bereits in einer Kurzmitteilung¹⁰⁾ zusammengefaßten Arbeiten zur Photolyse von 1 in Benzol angestellt haben.

Reaktion von RuCl₂(pp₃) mit LiAlH₄

Polyhydridische M-H-Al-verbrückte Aluminatokomplexe lassen sich bisweilen als reaktive Zwischenstufen der zu Hydridoderivaten führenden "LiAlH₄-Reduktion" von Übergangsmetall-Halogenokomplexen isolieren⁷). Ihre Stabilisierung gelingt insbesondere durch Adduktbildung

Oligophosphane Ligands, XXVII¹⁾. – RuH₂[P(CH₂CH₂CH₂-PMe₂)₃]: Formation, Protonation, CO₂ Insertion, and Oxidative Addition of Benzene

An extremely labile polyhydric aluminato species of composition $[Li_3Ru_2H_3(AlH_4)_4(pp_3)_2(OC_4H_8)_2]_x$ (2) was isolated as an intermediate of the reaction between RuCl₂(pp₃) and LiAlH₄ in THF, which leads to RuH₂(pp₃) (1) as the final product $[pp_3=P(CH_2-CH_2CH_2PMe_2)_3]$. 1 reacted with HBF₄ to produce $[RuH(pp_3)]BF_4$ (3); the conversion of 1 into the trihydrido derivative $[RuH_3(pp_3)]$ -BF₄ failed. Exposure of 1 to CO₂ yielded the formato complex RuH[OC(O)H](pp₃) (4). Photolysis of 1 in C₆D₆ gave RuD(C₆D₅)-(pp₃) as the exclusive organometallic product, which strongly suggests that the photochemical formation of RuH(C₆H₅)(pp₃) (5) from 1 and C₆H₆ proceeds by oxidative addition of benzene C – H bonds to the coordinatively unsaturated fragment Ru(pp₃). The molecular structure of 5 was determined by X-ray diffraction.

mit Ethern und Aminen¹¹⁻¹³⁾. Auch für die Umsetzung von $\operatorname{RuCl}_2(pp_3)$ mit LiAlH₄, die nach Solvolyse mit Ethanol je nach Aufarbeitungsbedingungen die Chlorohydrido-Verbindung RuHCl(pp₃) oder das Dihydrid 1 ergibt⁹⁾, war ein solches hydridisches Aluminatoderivat nachzuweisen.

Die fragliche Verbindung (2) ließ sich aus dem Eindampfrückstand der filtrierten Reaktionslösung durch rasches Extrahieren mit einem Toluol/Hexan-Gemisch abtrennen und nach Entfernen der Lösemittel i. Vak. als äußerst feuchtigkeitsempfindliches und pyrophores gelbes Pulver isolieren. Aus der Elementaranalyse wurde die Zusammensetzung $[Li_3Ru_2H_3(AlH_4)_4(pp_3)(OC_4H_8)_2]_x$ abgeleitet (gefundenes Atomzahlenverhältnis P/Al/Li = 8:3.93:3.07). Versuche, das noch etwa 10 Mol-% LiCl enthaltende Produkt weiter zu reinigen, blieben erfolglos, da sich 2 nicht nur unter dem Einfluß protischer Agenzien, sondern bereits auch bei wiederholtem Umlösen aus inerten Kohlenwasserstoffen guantitativ zum Dihydrid 1 umsetzte. Dieser Befund entspricht älteren Beobachtungen von Chatt und Hayter, nach denen die Extraktion von RuX₂(Chelat-Bisphosphan)₂/LiAlH₄/ THF-Reaktionsgemischen mit Petrolether auch ohne vorherige Alkoholyse RuH2-Derivate liefert¹⁴). Treibende Kraft des Zerfalls der Aluminato-Spezies im unpolaren Solvens dürfte die Bildung des sich aus einem Lösungsgleichgewicht $RuAlH_4 = RuH + AlH_3$ abscheidenden polymeren Aluminiumwasserstoffs sein¹⁵⁾, der als pyrophores, in Kohlenwasserstoffen unlösliches graues Nebenprodukt der Umwandlung $2 \rightarrow 1$ beobachtet wurde.

$\frac{\text{RuH}_2[P(CH_2CH_2CH_2PMe_2)_3]}{1}$	$[Li_{3}Ru_{2}H_{3}(AlH_{4})_{4}(pp_{3})_{2}(OC_{4}H_{8})_{2}]_{2}$		
[RuH(pp ₃)]BF ₄	$RuH[OC(O)H](pp_3)$		

 $pp_3 = P(CH_2CH_2CH_2PMe_2)_3$

Daß 2 tatsächlich als Verbindung und nicht etwa als Gemisch aus 1 und LiAlH₄ vorliegt, wird durch folgende spektroskopische Daten belegt: (1) Während die v(AlH)-Banden von festem LiAlH₄ bei 1645 und 1780 cm⁻¹ erscheinen¹⁶, und während 1 zwei starke v(RuH)-Absorptionen bei 1736 und 1808 cm⁻¹ aufweist, zeigt 2 im Bereich der Metall-Hydrid-Streckfrequenzen lediglich eine breite Bande um 1775 cm⁻¹, welche sowohl mit RuH- als auch mit RuHAlH_x-Valenzschwingungen in Verbindung gebracht werden kann^{17,18)}. (2) Die RuH- bzw. RuHAl-Resonanzen, die im 80.13-MHz-¹H-NMR-Spektrum einer C₆D₆-Lösung von 2 im Bereich $-10.7 < \delta < -8.3$ als überlagerte Multipletts breiter Linien erscheinen, unterscheiden sich in Verschiebung und Aufspaltung auffällig von den RuH-Signalen des Komplexes 1, der unter gleichen Bedingungen zwei deutlich getrennte Signalgruppen bei $\delta = -9.45$ und -8.20 aufweist. Zusätzlich ruft 2 noch ein bei $\delta = 3.7$ zentriertes breites Signal hervor, das bei 1 fehlt. In Analogie zu den für $[(Me_3P)_3Ru(H)AlH_4]_2^{17}$ und $(C_5Me_5)(PR_3)RuAlH_4^{18}$ getroffenen Zuordnungen kann dieses den Hydridoliganden eines polyhydridischen Aluminato-Bausteins zugeordnet werden. (3) Die ³¹P-NMR-Resonanzen von 1 wurden in $[D_8]$ Toluol bei $\delta(P_A) = 5.0$, $\delta(P_B) = 4.1$ und $\delta(P_X) = -0.8^{19}$ als A₂BX-Signal mit $J(P_A P_B) =$ 32, $J(P_AP_X) = 25$ und $J(P_BP_X) = 28$ Hz beobachtet. Demgegenüber ist Verbindung 2 in C₆D₆ durch folgende AM₂X-Parameter charakterisiert: $\delta(P_A) = 4.65, \ \delta(P_M) = 0.38, \ \delta(P_X) = -2.37; \ J(P_A P_M)$ $= J(P_AP_X) = 36.0$ und $J(P_MP_X) = 25.2$ Hz. (4) Das 93.83-MHz-²⁷Al-NMR-Spektrum einer C₆D₆-Lösung von 2 zeigt kein auf gelöstes LiAlH₄ (99 < δ < 103)²⁰⁾ zurückführbares Signal; stattdessen enthält das Spektrum im Verschiebungsbereich des von Hydridoliganden tetrakoordinierten Aluminiumkerns zwei überlagerte Resonanzen bei $\delta = 105$ und 117 (Halbwertsbreite ca. 2.1 kHz). Ein weiteres Signal bei $\delta = 61$ (Halbwertsbreite ca. 5.1 kHz) ließ sich pentakoordinierten AlH5-Fragmenten zuweisen¹⁷⁾. Demnach sollte 2 ebenso wie zahlreiche andere der üblicherweise mehrkernigen Alanato-Übergangsmetallkomplexe^{7,17)} neben MHAlH₃-Einheiten auch Brücken des Typs H₃Al(µ-H)₂AlH₃ aufweisen. Eine weitergehende Charakterisierung der Struktur von 2 war mit den am Ort vorhandenen Methoden nicht möglich, zumal es wegen der Labilität der Verbindung nicht gelang, einkristallines Material zu erhalten.

Reaktionen von 1 mit HBF₄ und CO₂

Die Umsetzung von 1 mit HBF₄ in THF/Ether führte, selbst in Gegenwart von Wasserstoff, unter Gasentwicklung zum farblosen Komplex [RuH(pp₃)]BF₄ (3). Hinweise auf eine Protonierung von 1 unter Bildung des Kations [RuH₃(pp₃)]⁺, welches wir sowohl als Pendant zum η^2 -H₂-Ruthenium(II)-Derivat [RuH(H₂)(Ph₂PCH₂CH₂PPh₂)₂]⁺²¹) als auch als Analogon des (Trihydrido)metall(IV)-Kations [OsH₃(PMe₃)₄]⁺²²) für denkbar gehalten hatten, ergaben sich nicht. Im Vergleich mit dem von einem arylsubstituierten Chelatphosphan koordinierten Zentralmetall des Komplexes [RuH(H₂)(Ph₂PCH₂CH₂PPh₂)₂]⁺ erscheint das von dem durchgehend alkylierten pp₃-Liganden gestützte Ruthenium-Atom von 1 demnach bereits so elektronenreich, daß übermäßiger Ru \rightarrow H₂(σ^*)-Ladungstransfer einen molekularen H₂-Liganden am RuH(pp₃)-Fragment nicht existieren läßt⁶. Ersichtlich reicht der Elektronendruck des pp₃-Liganden aber noch nicht aus, um das Zentralmetall des hypothetischen Protonierungsproduktes $[RuH_3(pp_3)]^+$ ähnlich wie das metallbasische Osmium-Atom von $[Os-H_3(pp_3)]^+$ in der Oxidationsstufe IV gegen reduktive H₂-Eliminierung zu stabilisieren.

Sowohl in spektroskopischer als auch in chemischer Hinsicht unterscheidet sich 3 deutlich von seinem leichteren Homologen [FeH(pp₃)]BF₄²³⁾. Das Kation [FeH(pp₃)]⁺ besitzt nach NMR-Befunden eine weitgehend tetraedrische Koordinationsgeometrie, in welcher der Hydridoligand räumlich nicht fixiert ist; als koordinativ ungesättigtes reaktives Teilchen vermag es selbst molekularen Stickstoff bereitwillig zu binden. Demgegenüber reagiert 3 mit Distickstoff nicht; ähnliches wurde für [RuH(Ph2PCH2CH2PPh2)2]BF4 berichtet²⁰⁾. Auch zeigt das Kation $[RuH(pp_3)]^+$ nach ¹H- und ³¹P-NMR-Aussage eine konformativ starre Anordnung seiner Liganden: ¹H-NMR ($[D_6]$ Aceton): $\delta(RuH) = -7.36$ $[ddt, trans-J(PH) = 88, cis-J(PH) = 28, cis-J(P_2H) = 22$ Hz]. ³¹P-NMR ([D₆]Aceton): AM₂X-Signal mit $\delta(P_A)$ = 41.85, $\delta(P_M) = -0.91$ und $\delta(P_X) = -9.08$ sowie $J(P_A P_M)$ = 40.9, $J(P_AP_X) = 27.6$ und $J(P_MP_X) = 22.1$ Hz. Ein ganz ähnlicher Gang der ³¹P-NMR-Verschiebungen und praktisch übereinstimmende PP-Kopplungen wurden schon früher an RuHCl(pp₃) beobachtet⁹: $\delta = 32.6 [P(CH_2-)_3;$ trans-Ligand Cl], -1.3 (PMe₂; trans-Gruppe PMe₂), -11.2 (PMe₂; trans-Ligand H); J(PP) = 40, 27 und 22 Hz. Die weitgehende Übereinstimmung dieser ³¹P-NMR-Daten sowie die nur wenige cm⁻¹ voneinander differierenden Werte der an KBr-Verreibungen gemessenen v(RuH)-Wellenzahlen von 3 (1802 cm⁻¹) und RuHCl(pp₃) (1809 cm⁻¹)^{9,24}) lassen vermuten, daß in beiden Verbindungen das Zentralmetall in vergleichbarer oktaedrischer Umgebung vorliegt. Auch in der Koordinationssphäre von 3 sollte also die in trans-Stellung zum verbrückenden P-Atom des Chelatphosphans befindliche Metall-Haftstelle durch einen Liganden mit elektronegativem Donoratom aufgefüllt sein. Im festen Zustand kommt hierfür das BF4-Gegenion in Frage²⁵⁾, in der Acetonlösung auch das Lösemittel-Molekül²⁶⁾.

Kohlendioxid wird von 1 in glatter Reaktion gebunden, wobei der farblose Formato-Komplex RuH[OC(O)H](p₃) (4) in hoher Ausbeute entsteht. 4 ist durch folgende IR- und NMR-Daten charakterisiert: IR (KBr): v = 2660 (Format-CH), 1803 (RuH), 1600 und 1342 (je CO₂) cm⁻¹. – ¹H-NMR (C₆D₆): $\delta = 8.95$ (d, J(PH) = 6 Hz, Format-CH), -7.70 [ddt, *trans-J*(PH) = 95, *cis-J*(PH) = 23, *cis-J*(P₂H) = 27 Hz, RuH]. – ¹³C-NMR (C₆D₆); $\delta = 169.47$ [d, J(CH) =188 Hz, Format-C]. – ³¹P-NMR (C₆D₆): AM₂X-Signal mit $\delta(P_A) = 35.89$ (*trans*-Ligand OC(O)H, $\delta(P_M) = 1.58$ (*trans*-Gruppe PMe₂) und $\delta(P_X) = -7.48$ (*trans*-Ligand H) sowie $J(P_AP_M) = 40.3$, $J(P_AP_X) = 26.0$ und $J(P_MP_X) = 22.6$ Hz. Wiederum sei auf die Vergleichbarkeit der ³¹P-NMR-Daten von 3 und 4 verwiesen, die weiteren Anhalt dafür liefert, daß in 3 ein sechsfach koordiniertes Zentralatom vorliegt.

Während der aus $RuH_2(PPh_3)_4$ und CO_2 zugängliche η^2 -Formato-Komplex $RuH(O_2CH)(PPh_3)_3$ ein reversibel gebundenes Kohlendioxid-Molekül enthält und in Lösung die Eigenschaften eines labilen CO_2 -Addukts $RuH_2(CO_2)(PPh_3)_3$ entfaltet^{27,28}, zeigt **4** keinerlei Neigung zur Wiederabgabe des Kohlendioxids. Dies kann auf den Chelateffekt des pp₃-Liganden zurückgeführt werden, welcher ein Lösungsgleichgewicht zwischen **4** und einer Spezies $RuH_2(CO_2)(p_2p) - p$ mit freier Me₂P-Funktion ungünstig erscheinen läßt.

Photolyse von 1 in Benzol; Molekülstruktur von $RuH(C_6H_5)(pp_3)$

Wird eine ca. 0.03 M Lösung von 1 in Benzol bei Raumtemperatur mit einer Hg-Hochdrucklampe durch die Wand eines Solidex-Schlenkrohres bestrahlt, so entwickelt sich innerhalb von vier bis fünf Stunden das molare Äquivalent H₂, und man erhält das nahezu farblose $H - C_6H_5$ -Spaltungsprodukt RuH(C₆H₅)(pp₃) (5) in ca. 80proz. Ausbeute. Die Charakterisierung von 5, die sich bislang lediglich auf spektroskopische Daten stützte¹⁰, gelang nun auch durch eine Röntgenstrukturanalyse (Abb. 1, Tab. 1).

Abb. 1. Molekülstruktur von 5 im Kristall

Tab. 1. Ausgewählte Bindungslängen (pm) und -winkel (°) von 5

Länge	Winkel Ru	P2	Р3	P4	C16	н
231.2(2) 235.1(2) 231.2(2) 228.9(2) 218.2(3) 165(3)	P1 P2 P3 P4 C16 H	101.4(1)	159.3(1) 98.6(1)	95.4(1) 91.9(1) 89.2(1)	81.9(1) 96.0(1) 90.9(1) 172.0(2)	80.3(9) 175.1(9) 80.1(9) 83.3(9) 88.8(9)

Die verzerrt oktaedrische Koordinationsgeometrie von 5 entspricht weitgehend derjenigen des Chloro(hydrido)-Komplexes RuHCl(pp₃), in dessen Molekül der H-Ligand ebenfalls in *trans*-Stellung zur Me₂P-Endgruppe um P2 angesiedelt ist²⁹. Abgesehen von den Abständen des verbrükkenden Phosphoratoms P4 vom Zentralmetall – 228.9(2) pm in 5, 221.7(2) pm in RuHCl(pp₃) – weisen beide Komplexe auch ganz ähnliche Ru-P-Bindungslängen und P-Ru-P-Bindungswinkel auf. Die auffällige Dehnung der Ru-P4-Bindung im Molekül 5 reflektiert die im Vergleich zum trans-Einfluß von Cl⁻ sehr ausgeprägte Schwächung von trans-Bindungen durch C-Donatoren. Allerdings scheint sich der trans-Einfluß von Arylgruppen auf die Ru-P-Bindung nicht so stark auszuwirken wie der eines Hydrido-Liganden: Ebenso wie in 5 befindet sich die RuH-Einheit nämlich auch in einer Reihe weiterer Komplexe des Typs RuH(aryl)(pp₃)³⁰⁾ ausschließlich in trans-Stellung zu der an nur einem Chelatring beteiligten Me₂P-Endgruppe. Verglichen mit der nicht beobachteten Anordnung des H-Liganden trans zu dem in drei Chelatstrukturen eingebundenen Brücken-P-Atom ist dies die Position, aus der heraus die gegenüberliegende Ru-P-Bindung stärker aufgeweitet werden kann. Der für 5 beobachtete Abstand $Ru - C(sp^2)$, 218.2(3) pm, kann mit der Metall-Naphthyl-Bindungslänge von $RuH(C_{10}H_7)(Me_2PCH_2CH_2PMe_2)_2$ (216(1) pm³¹) verglichen werden. Die Verkürzung gegenüber typischen an Komplexen des Typs cis-RuH(alkyl)(PR₃)₄ gemessenen Ru-C-(sp³)-Abständen [221.1(5)³²⁾ und 221.4(6)³³⁾ pm] reflektiert keine π -Anteile in der Ru-Aryl-Bindung, sondern spiegelt lediglich die Differenz der Einfachbindungsradien von sp³und sp²-hybridisierten C-Atomen wider. Zwischen dem ipso-Atom C16 sowie den ortho-Atomen C17 und C21 einerseits und den Me₂P-Atomen C1 und C12 andererseits existieren selbst bei der mit einem Neigungswinkel von nur 17° weitgehend coplanaren Anordnung des Phenylrings zur "besten" Koordinationsebene Ru/P2/P4/C16 räumliche Kontakte im Bereich von etwa 315-330 pm. Diese Abstände sind deutlich kürzer als von den Summen der van-der-Waals-Radien von Methyl- und Phenylgruppen, ca. 370 pm³⁴⁾, zu erwarten wäre; sie lassen auf behinderte Drehbarkeit des C₆H₅-Liganden um die Ru-C-Bindung schließen und entsprechen somit der im ¹³C-NMR-Spektrum beobachteten Nichtäguivalenz der ortho-Kerne C17 und C21 sowie der meta-Kerne C18 und C20¹⁰⁾.

Für die zu 5 führende Photolyse von 1 in Benzol ist das 16e-Fragment Ru(pp₃) als Zwischenprodukt (Schema 1, Weg a) plausibel und wahrscheinlich; die in Schema 1, Weg b, formulierte Reaktionssequenz "Me₂P-Dissoziation unter Freisetzung von $p - (pp_2)RuH_2$, oxidative C₆H₆-Addition zu $p - (pp_2)RuH_3(C_6H_5)$, reduktive H_2 -Eliminierung unter Bildung von 1" erscheint wegen der im ersten Reaktionsschritt erforderlichen Chelatringöffnung demgegenüber wenig attraktiv. Allerdings ist eine ganz entsprechende Abfolge von Einzelreaktionen für die das Phenylhydrid OsH(C₆H₅)- $(PMe_3)_4$ ergebende Thermolyse von OsH $(CH_2CMe_3)(PMe_3)_4$ in Benzol belegt: Zwischenstufen sind in diesem Fall das Me_3P -Dissoziationsprodukt $OsH(CH_2CMe_3)(PMe_3)_3$ und das Os(IV)-Derivat OsH₂(CH₂CMe₃)(C₆H₅)(PMe₃)₃, welches Neopentan abspaltet und Trimethylphosphan wieder anlagert³⁵⁾.

Bei der Photolyse des Dihydridokomplexes 1 in Hexadeuteriobenzol sollte eine zwischenzeitlich etwa auftretende Trihydridophenylruthenium(IV)-Spezies nun in Form von $RuH_2D(C_6H_5)(p_2p)-p$ entstehen und sich infolge konkurrierender H_2 - und HD-Eliminierung an den Kreuzprodukten $RuD(C_6D_5)(pp_3)$ und $RuH(C_6D_5)(pp_3)$ zu erkennen geben. Als Produkt der photochemischen Umsetzung von 1 mit C_6D_6 wurde jedoch nur $RuD(C_6D_5)(pp_3)$ (5-D) beobach-

Schema 1. Denkbare Wege der photochemischen Umwandlung von $\operatorname{RuH}_2(pp_3)$ (1) und C_6H_6 in $\operatorname{RuH}(C_6H_5)(pp_3)$ (5) und H_2

tet. Dies spricht gegen ein Ru(IV)-Intermediat, ist aber mit der vorübergehenden Bildung des reaktiven 16e-Teilchens Ru(pp₃) gut verträglich. **5-D**: IR (Nujol): 1302 cm⁻¹ (RuD). $-^{31}$ P-NMR (C₆D₆): $\delta = 3.24$ [tdt, *cis-J*(PD) = 2.7, *cis-J*(PP) = 24.4, *cis-J*(PP₂) = 34.1 Hz; *trans*-P-Ru-C], -0.47 [tdd, *cis-J*(PD) = 4.2, *cis-J*(PP) = 24.4 und 34.1 Hz; *trans*-P-Ru-P], -9.85 [tq, *trans-J*(PD) = 12.5, *cis-J*(PP₃) = 24.4 Hz; *trans*-P-Ru-D]. Die ³¹P-Verschiebungen sowie die PP-Kopplungen von **5-D** entsprechen praktisch denen von **5**¹⁰, und die Kopplungskonstanten *J*(PD) befinden sich in guter Übereinstimmung mit den an RuD(C₆D₅)-(Me₂PCH₂CH₂PMe₂)₂ gemessenen Werten³⁶].

Für die finanzielle Unterstützung der Arbeit danken wir der Deutschen Forschungsgemeinschaft, der Stiftung Volkswagenwerk und dem Verband der Chemischen Industrie. Die Firmen Hoechst, Frankfurt, und Degussa, Hanau, gewährten großzügige Chemikalienspenden.

Experimenteller Teil

Alle Arbeiten wurden unter N₂-Schutzgas durchgeführt. Die Lösemittel waren trocken und luftfrei. – IR-Spektren: Gitterspektrometer (Perkin-Elmer 577, 325 und 225). – Spektren: Bruker-Geräte WP 80 (80.13 MHz bei ¹H) und AM 360 (360.13 MHz bei ¹H, 145.79 MHz bei ³¹P, 93.84 MHz bei ²⁷Al und 90.56 MHz bei ¹³C), – ¹Hund ¹³C-Verschiebungen relativ zum Signal des jeweils benutzten Lösemittels [bezogen auf δ (TMS) = 0.0], H₃PO₄ externer Standard für ³¹P-NMR; das ²⁷Al-Spektrum wurde gegen eine 1.5 M wäßrige Lösung von [Al(H₂O)₆]Cl₃ kalibriert. Positive δ -Werte zeigen Tieffeldverschiebungen an. Die Spektren von **2** wurden bei ca. 10 °C aufgenommen; ansonsten wurde bei üblicher Probenkopftemperatur (ca. 35 °C) gemessen. – Die Darstellung von RuCl₂(pp₃) sowie von **1** erfolgte wie in Lit.⁹ beschrieben.

Isolierung und analytische Charakterisierung von 2: Die Lösung von 1.03 g (2.01 mmol) RuCl₂(pp₃) in 40 ml THF wurde mit 0.40 g (10.55 mmol) LiAlH₄ versetzt und 3 d bei Raumtemp. gerührt. Der nach Filtrieren des Reaktionsgemischs und Entfernen des Lösemittels i. Vak. erhaltene Rückstand wurde mit 3 × 30 ml Toluol/ Hexan (1:1) extrahiert. Die filtrierten vereinigten Extrakte wurden i. Vak. zur Trockne eingedampft. Es verbleiben 0.91 g [Li₃Ru₂H₃-(AlH₄)₄(pp₃)₂(OC₄H₃)₂]_x (2) als farbloser Rückstand, der noch ca. 10 Mol-% Chlorid enthielt.

 $\begin{array}{l} C_{38}H_{107}Al_4Li_3O_2P_8Ru_2 \ (1174.95)\\ \text{Ber. C} \ 38.85 \ H \ 9.18 \ Al \ 9.19 \ Li \ 1.77 \ P \ 21.09\\ C_{38}H_{107}Al_4Li_3O_2P_8Ru_2 \ \cdot \ 0.1 \ LiCl \end{array}$

Ber. C 38.71 H 9.15 Al 9.15 Cl 0.30 Li 1.82 P 21.02 Gef. C 38.8 H 8.8 Al 8.9 Cl 0.3 Li 1.8 P 20.7 Hydrido[tris[3-(dimethylphosphino)propyl]phosphan]ruthenium(II)-tetrafluoroborat (3): Zu 215 mg (0.49 mmol) 1 in 7 ml THFwurde die äquimolare Menge HBF₄ als 54proz. Lösung in Diethylether gegeben. Unter Gasentwicklung bildete sich augenblicklichein farbloser Niederschlag des Komplexes 3. Dieser wurde nach 10min Rühren, Einengen der Lösung auf 2 ml und Zutropfen von 5ml Hexan abgesaugt und mit 2 × 5 ml Hexan gewaschen. Ausb.220 mg (85%).

$$\begin{array}{rl} C_{15}H_{37}BF_4P_4Ru \ (529.2) & \mbox{Ber. C} \ 34.04 \ \ \ H \ 7.05 \\ & \mbox{Gef. C} \ 33.7 \ \ \ \ H \ 7.0 \end{array}$$

Formatohydrido[tris[3-(dimethylphosphino)propyl]phosphan]ruthenium(II) (4): Eine Lösung von 140 mg (0.32 mmol) 1 in 15 ml THF wurde 6 h unter CO₂ gerührt. Der nach Entfernen des Lösemittels i.Vak. als farbloser Rückstand verbleibende Komplex 4 wurde in Hexan suspendiert, durch Filtrieren gesammelt und mit 2×5 ml Hexan gewaschen. Ausb. 148 mg (95%).

 $\begin{array}{cccc} C_{16}H_{38}O_2P_4Ru \ (487.45) & \text{Ber. C } 39.43 & \text{H } 7.86 & \text{O} \ 6.56 \\ & \text{Gef. C } 40.3 & \text{H } 7.9 & \text{O} \ 5.9 \end{array}$

Hydridophenyl[tris[3-(dimethylphosphino)propyl]phosphan]ruthenium(II) (5): Eine Lösung von 190 mg (0.43 mmol) 1 in 15 ml Benzol wurde mit einer Hg-Dampflampe Philips HPK 125 W durch die Wandung eines Solidex-Schlenkrohres bei Raumtemp. 5 h bestrahlt. Nach Filtrieren der leicht getrübten Reaktionslösung wurde das überschüssige Benzol i. Vak. entfernt und Komplex 5 aus dem öligen Rückstand durch Digerieren mit Hexan abgetrennt. Nach Entfernen des Lösemittels i. Vak. verblieben 180 mg (81%) 5 als fast farbloses Pulver.

$$\begin{array}{c} C_{21}H_{42}P_4Ru \ (519.5) \\ Gef. \ C \ 48.55 \ H \ 8.15 \\ Gef. \ C \ 48.1 \ H \ 8.3 \end{array}$$

Röntgenstrukturanalyse von 5³⁷⁾: Die kristallographischen Messungen wurden auf einem Vierkreisdiffraktometer des Typs Syntex P2₁ bei 20 °C unter Verwendung von Mo- K_{α} -Strahlung (Graphit-Monochromator, $\lambda = 71.07$ pm) durchgeführt. Zur Auswertung standen die Programmsysteme SHELX-76³⁸⁾, PARST-7³⁹⁾ und SCHAKAL⁴⁰⁾ zur Verfügung. Die ungefähren Abmessungen des aus der Mutterlauge der vorstehenden Präparation gewachsenen Einkristalls von 5 ($C_{21}H_{42}P_4Ru$, 519.5) betrugen 0.25 × 0.25 × 0.3 mm. Er kristallisierte in der monoklinen Raumgruppe $P2_1/c$ mit a =1415(1), b = 998(1), c = 1767(1) pm, $\beta = 96.81(9)^{\circ}$, V = 2478(4). 10^6 pm^3 , Z = 4, $D_c = 1.393 \text{ gcm}^{-3}$ und $\mu = 8.0 \text{ cm}^{-1}$. Es wurden 6290 Intensitäten im $\Theta/2\Theta$ -scan bis zu $2\Theta_{max} = 55^{\circ}$ gesammelt. Der benutzte Datensatz umfaßte 5270 unabhängige Reflexe mit 5114 signifikanten Strukturfaktoren ($F_{0} > 4\sigma$). Es wurde keine Absorptionskorrektur durchgeführt. Die Struktur wurde durch Patterson- und anschließende Differenz-Fourier-Synthesen gelöst. Das erhaltene Strukturmodell wurde nach Vollmatrix-LSO-Methoden mit anisotropen thermischen Parametern für alle Nicht-H-Atome und einem isotropen Temperaturfaktor für Ru-H verfeinert. Die C-gebundenen H-Atome wurden in idealisierten Positionen mit ei-

Tab. 2. Lageparameter und äquivalente isotrope Temperaturfaktoren U_{aq}^{a} von 5

x/a	y/b	z/c	^U äq
.23617(1)	.02175(3)	.10487(1)	.0281(2)
.21388(4)	10977(7)	.20902(3)	.0351(5)
.38223(4)	.12543(7)	.14663(3)	.0371(5)
.21580(4)	.10229(7)	01868(3)	.0368(5)
.15208(4)	.20143(7)	.14169(3)	.0375(6)
.1381(2)	2557(3)	.1851(2)	.055(3)
.3103(2)	1945(3)	.2689(2)	.056(3)
.1521(3)	0364(3)	.2849(2)	.054(3)
.0692(2)	.0540(3)	.2565(2)	.058(3)
.1000(2)	.1920(3)	.2328(2)	.056(3)
.4426(2)	.0889(4)	.2422(2)	.064(4)
.4846(2)	.1099(3)	.0921(2)	.062(3)
.3812(2)	.3101(3)	.1542(2)	.053(3)
.3059(3)	.3692(3)	.2000(2)	.062(3)
.2065(2)	.3689(3)	.1555(2)	.055(3)
.2869(2)	.2402(3)	0503(2)	.057(3)
.2261(3)	0133(3)	0979(2)	.058(3)
.0958(2)	.1662(3)	0504(2)	.051(3)
.0618(2)	.2829(3)	0043(2)	.058(3)
.0446(2)	.2477(3)	.0774(2)	.052(3)
.2972(2)	1638(3)	.0670(2)	.038(2)
.2421(2)	2543(3)	.0196(2)	.047(3)
.2783(3)	3719(3)	0082(2)	.055(3)
.3724(3)	4053(3)	.0118(2)	.061(3)
.4281(2)	3241(3)	.0619(2)	.056(3)
.3889(2)	2061(3)	.0882(2)	.046(3)
.129(2)	038(3)	.076(2)	.060(9)
	x/a .23617(1) .21388(4) .38223(4) .21580(4) .1381(2) .3103(2) .1521(3) .0692(2) .1000(2) .4426(2) .3812(2) .3059(3) .2065(2) .2869(2) .2869(2) .2869(2) .0618(2) .0648(2) .2972(2) .2421(2) .3724(3) .4281(2) .3889(2) .129(2)	x/a y/b .23617(1).02175(3).21388(4)10977(7).38223(4).12543(7).21580(4).0229(7).15208(4).20143(7).1381(2)2557(3).1521(3)0364(3).0692(2).0540(3).1000(2).1920(3).4426(2).0889(4).3812(2).3101(3).3659(3).3692(3).2065(2).3689(3).2869(2).2402(3).2869(2).2402(3).2618(2).2829(3).046(2).2829(3).046(2).2477(3).2972(2)1638(3).2783(3)3719(3).3724(3)2061(3).3889(2)2061(3).129(2)038(3)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^{a)}
$$U_{aq} = (U_{11} + U_{22} + U_{33})/3.$$

nem gemeinsamen isotropen thermischen Verhalten in einem C-H-Abstand von 96 pm berücksichtigt. Für 240 Parameter konvergierte die Verfeinerung bei R = 0.027 und $R_w = 0.034$ [Gewichtssetzung: $w^{-1} = \sigma^2(F_0) + 0.0001 (F_0)^2$; maximale Restelektronendichte 0.7 e/10⁶ pm³ im Abstand von 89 pm vom Rutheniumatom]. Tab. 2 enthält die abschließenden Koordinaten und Temperaturfaktoren.

CAS-Registry-Nummern

- 1: 100791-59-1 / 3: 112021-74-6 / 4: 112021-72-4 / 5: 100791-61-5 / 5-D: 112021-73-5 / RuCl₂(pp₃): 93254-23-0 / PhH: 71-43-2
- ¹⁾ XXVI. Mitteilung: B. Pietsch, L. Dahlenburg, Inorg. Chim. Acta, im Druck.
- ²⁾ R. P. A. Sneeden in Comprehensive Organometallic Chemistry (G. Wilkinson, F. G. A. Stone, E. W. Abel, Ed.), Bd. VIII, S. 225, Pergamon, Oxford 1982.
- ³⁾ D. J. Darensbourg, R. A. Kudaroski, Adv. Organomet. Chem. 22 (1983) 129.
- ⁴⁾ M. Ephritikhine, Nouv. J. Chim. 10 (1986) 9.
- ⁵⁾ R. A. Periana, R. G. Bergman, J. Am. Chem. Soc. 108 (1986) 7332, sowie die dort gegebene Literaturübersicht.
- ⁶⁾ G. J. Kubas, C. J. Unkefer, B. I. Swanson, E. Fukushima, J. Am. Chem. Soc. 108 (1986) 7000, und zitierte Literatur.
- ⁷⁾ A. R. Barron, G. Wilkinson, M. Motevalli, M. B. Hursthouse, J. Chem. Soc., Dalton Trans. 1987, 837, und vorausgehende Arbei-
- ten. ⁸⁾ J. Chatt, R. G. Hayter, Proc. Chem. Soc. London 1959, 153.
- 9) M. Antberg, L. Dahlenburg, Inorg. Chim. Acta 111 (1986) 73.

- ¹⁰⁾ M. Antberg, L. Dahlenburg, Angew. Chem. 98 (1986) 274; Angew. Chem. Int. Ed. Engl. **25** (1986) 260.
- ¹¹⁾ V. K. Belsky, A. B. Erofeev, B. M. Bulychev, G. Soloveichik, J. Organomet. Chem. 265 (1984) 123. ¹²⁾ E. B. Lobkovskii, G. L. Soloveichik, A. I. Sisov, B. M. Bulychev,
- A. I. Gusev, N. I. Kirillova, J. Organomet. Chem. 265 (1984) 167.
- ¹³⁾ V. K. Bel'skii, B. M. Bulychev, A. B. Erofeev, G. L. Soloveichik, J. Organomet. Chem. 268 (1984) 107.
- ¹⁴⁾ J. Chatt, R. G. Hayter, J. Chem. Soc. 1961, 2605.
- ¹⁵⁾ Vgl. hierzu auch die Zersetzung von (Cp₂TiAlH₄)₂ · TMEDA, die in Toluol unter Freisetzung von (TMEDA · AlH₃)_x verläuft: E. M. Lobkovskii, G. L. Soloveichik, A. I. Sizov, B. M. Bulychev, J. Organomet. Chem. 280 (1985) 53.
- ¹⁶⁾ A. E. Shirk, D. F. Shriver, J. Am. Chem. Soc. 95 (1973) 5904.
- ¹⁷⁾ A. R. Barron, G. Wilkinson, J. Chem. Soc., Dalton Trans. 1986, 287.
- ¹⁸⁾ D. H. Lee, H. Suzuki, Y. Moro-oka, J. Organomet. Chem. 330 (1987) C 20.
- ¹⁹⁾ $\delta(\mathbf{P}_{\mathbf{X}})$ in Lit.⁹⁾ irrtümlich mit +0.8 ppm angegeben.
- ²⁰⁾ H. Nöth, R. Rurländer, P. Wolfgarth, Z. Naturforsch., Teil B, 36 (1981) 31
- ²¹⁾ R. H. Morris, J. F. Sawyer, M. Shiralian, J. D. Zubkowski, J. Am. Chem. Soc. 107 (1985) 5581.
- ²²⁾ H. Werner, J. Gotzig, Organometallics 2 (1983) 547.
 ²³⁾ M. Antberg, K.-M. Frosin, L. Dahlenburg, J. Organomet. Chem.
 338 (1988) 319. [FeH(pp3)]BF4 weist mit 1877 cm^{-1 22}) eine deutlich höhere 24)
- v(FeH)-Wellenzahl auf als FeHCl(pp₃) [v(FeH) = 1809 cm⁻ M. Antberg, L. Dahlenburg, Z. Naturforsch., Teil B, 40 (1985) 14857.
- ²⁵⁾ W. Beck, K. Schloter, Z. Naturforsch., Teil B, 33 (1978) 1214.
 ²⁶⁾ Für einen solvatisierten Komplex des Typs [RuH(PR₃)₄]BF₄ vgl. z.B. B. Chaudret, G. Commenges, R. Poilblanc, J. Chem. Soc., Dalton Trans 1984, 1635.
- ²⁷⁾ S. Komiya, A. Yamamoto, J. Organomet. Chem. 46 (1972) C 58.
- ²⁸⁾ I. S. Kolomnikov, A. I. Gusev, G. G. Aleksandrov, T. S. Lobeeva, Yu. T. Struchkov, M. E. Vol'pin, J. Organomet. Chem. 59 (1973) 349
- ²⁹⁾ M. Antberg, L. Dahlenburg, Acta Crystallogr., Sect. C, 42 (1986) 997
- ³⁰⁾ L. Dahlenburg, K.-M. Frosin, Chem. Ber. 121 (1988) 865, nachstehend.
- ³¹⁾ U. A. Gregory, S. D. Ibekwe, B. T. Kilbourn, D. R. Russell, J. Chem. Soc., Sect. A, 1971, 1118.
- ³²⁾ F. A. Cotton, D. L. Hunter, B. A. Frenz, Inorg. Chim. Acta 15 (1975) 15
- ³³⁾ W.-K. Wong, K. W. Chiu, J. A. Statler, G. Wilkinson, M. Mo-tevalli, M. B. Hursthouse, *Polyhedron* 3 (1984) 1255.
- ³⁴⁾ J. E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, 2. Aufl., S. 233, Harper & Row, New York 1978.
- ³⁵⁾ P. J. Desrosiers, R. S. Shinomoto, Th. C. Flood, J. Am. Chem.
- Soc. 108 (1986) 7964. ³⁶⁾ C. A. Tolman, S. D. Ittel, A. D. English, J. P. Jesson, J. Am. Chem. Soc. 101 (1979) 1742
- ³⁷⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik GmbH, D-7513 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52676, der Autoren und des Zeitschriftenzitats angefordert werden.
- ³⁸⁾ G. M. Sheldrick, SHELX-76, a Program for Crystal Structure Determination, Cambridge 1976.
- ³⁹⁾ M. Nardelli, PARST-7, a System of Fortran Routines for Calculating Molecular Structure Parameters from Results of Crystal Structure Analysis, Parma 1984.
- ⁴⁰⁾ E. Keller, SCHAKAL, ein Fortran-Programm für die graphische Darstellung von Molekülmodellen, Freiburg 1981.

[302/87]